Tag Archives: ai

Conversational AI-led analytics is indeed the game-changer for contact centers | Part 2 of 3 | geniSIGHTS

BPO – Analytics: A prerequisite for operational efficiency:

The contact center has extensive information about customers, their behavioral and non-behavioral data, product experience, and the interactions with the frontline staff. With appropriate analytics, the information could be modeled to predict very useful characteristics to promote the product, up-sell/cross-sell, predict the intent of the customer call, etc. 

BPO sector sets forth the following expectations which can be achieved through Advanced Analytics:

  • The historical and current data needs to be analyzed to uncover the masked opportunities for the strengthening of the organization. 
  • The potential customers have to be identified, segmented, and targeted for the marketing campaign.
  • The unstructured data from the customer complaints have to be extracted and analyzed further to enhance customer service strategies.
  • The data from social media requires to be mined to determine emotions and opinions about brands, products, and services. 
  • The customers who are likely to cease the service from the business need to be predicted.
  • The intent of the customer has to be predicted to give what exactly the customer wants before they ask for it.
  • There is a need for prediction of the future using extensive evaluation of the past performance
  • Recurrent issues of a product should be categorized for future enhancements.
  • The best products to be recommended to customers are to be predicted so that they can easily find their desired product.
  • The total value a customer can bring to a company throughout their lifetime is to be measured.

Analytical Solutions for Contact Centers:

geniSIGHTS understands the pressing needs of Business Process Outsourcing companies and has come up with a handful of analytical solutions. These intelligence solutions yield valuable insights to organizations ensuring the highest level of customer satisfaction.

Some of the analytical solutions offered are:

Uplift Modelling

The Uplift Modelling ensures that the customers who have higher propensity scores are rightly identified and targeted for the marketing campaigns. The customers are segmented into four categories based on their behavior after being encountered with a marketing action.

  1. Sure Things – Customers who would have responded whether they were targeted or not.
  2. Lost Causes – Customers who will not respond irrespective of whether or not they are Targeted.
  3. Sleeping dogs – Customers who are less likely to respond because they were targeted.
  4. Persuadables – Customers who only respond to the marketing action because they were Targeted.

Cross-sell/Upsell recommendation

The cross-sell recommendation suggests the customers for the complementary product when they purchase a new product. The upsell recommendation shows up the customers with a better version of the product that they plan to buy. This system uses affinity analysis/association rules mining to analyze the co-occurrence of relationships among activities performed by customers and discover the cross-sell/up-sell opportunities accordingly. 

Recommendations Systems

The recommendation system exceptionally helps the business to predict the most likely product that the customer will buy. This system can therefore provide more personalized offers for the items of the customer’s interest.

Predicting customer churn rate

Customer Churn analysis predicts the customers who are likely to cancel their subscription from the company. The analysis also helps to understand why the customers are leaving and the possible ways to reduce the churn.

Sentiment mining

Sentiment mining extracts the necessary information from social media to understand what people think about a product or how they look up to a brand. The emotional tone behind each mention in social media can be derived from this analysis.

Customer Effort Analysis

The customer effort analysis brings out the amount of effort a customer puts in getting his issues resolved through various touchpoints.

These are some of the advanced analytical solutions that the conversational AI could offer for the problems faced by contact centers. Wait for edition 3 to find out how Conversational AI resolves all the problems of contact centers in real-time.

Are you a contact center organization looking for real-time & customized analytics solutions for your business?

We have a product explicitly designed to cater to your analytical needs. Get in touch with us at info@genisights.com or contact@flash.genisights.com to schedule an appointment today!

You can likewise visit our website https://flash.genisights.com/ to know more about our product.

Learn how Advanced Analytics aids the contact centers to enhance the customer experience thereby converting contact centers to revenue centers. Our Conversational AI product FLASH comes handy providing meaningful insights in just a matter of seconds.

Conversational AI-led analytics is indeed the game-changer for contact centers is a 3 part blog. Part 1 concentrated on the problems faced by the contact centers which is now followed by the solutions conversational AI could offer in part 2 and how the conversational AI solves the problems in real-time will be in part 3 of the blog.

Conversational AI-led analytics is indeed the game-changer for contact centers | Part 1 of 3 | geniSIGHTS

How Conversational AI assists Contact Centers?

Advanced Analytics assists Contact centers to hasten the decision making with real-time insights. It extends tremendous support for the Business Process Outsourcing Companies in improving their Key Performance Indicators thereby enhancing customer satisfaction.

In the competitive industry, building trust over a brand is inevitable. The companies are increasingly investing in service centers to improve the key determinants like customer acquisition, customer retention, and customer margin. The contact centers are continuously evolving at a fast pace to meet the customer’s demand anytime. They serve as a bridge between the brand and the customers. Establishing a strong customer base is vital for every business and the contact center does this job effectively.

Frontline staff at the war front:

The frontline staff is the first point of contact for the customers with the company. They are also responsible for retaining a business reputation. The expectations of the customers are tremendously increasing over time and the frontline staff needs to be well equipped to satisfy the customer’s needs. Also in the fast-paced environment, everyone expects things to get done fast.

The Frontline staff are upskilled on the product completely to deal with the most difficult customers. But due to high attrition in the service center sectors, the new staff are not well educated on the product leading to the frustration of the customers.

There is a pressing need in the industry to implement a software solution that behaves like more of a data assistant to these frontline employees. The conversational AI ensures that the customer receives a more personalized and quick response. When the frontline staff is faced with similar kinds of requests from the customers, the conversational AI connects to the data in the past and provides the relevant suggestions to the staff. The resolution time of the queries will greatly be improved which in turn provides positive customer feedback.

Major Concerns of a Contact Center:

High Attrition Rate:

High Attrition Rate is an alarming concern of the contact center industry that has to be addressed. Every customer expects instant resolution for their real-time queries. The front-line staff should be well equipped and trained with accurate solutions to avoid potential customer’s turn-off. Oftentimes, the new service staff is unaware of the past queries and how the organization resolved them previously. The attrition rate necessitates the contact center company to hire and train the new staff which imbibes huge costs.

First-call resolution (FCR):

First-call resolution (FCR) is widely regarded as an important facet for achieving customer satisfaction in the Contact Centre. However, as today’s customers tend to ring with increasingly complex queries, it isn’t always possible to provide an immediate answer. If callers end up having to speak to several agents regarding a single inquiry, the customer experience becomes inefficient and satisfaction levels plummet. 

Repeated Calls:

A recent survey reveals that 20 to 30 percent of a Contact Centre’s call volume is callbacks from previous, unresolved issues. In another survey, it was found that 70% of UK customers speak to an average of two to five customer service representatives before resolving a single issue which has reflected the preference of consumers across the UK from Contact Centres to various other channels like email, chat, or use social media or mobile apps and a host of other sources to drop a line.

Lack of Information:

The customers contact the service centers for information. When the service agent is unequipped with the solution, they put the customers on hold. The customer gets aggravated and frustrated when they have to wait for long. The waiting time is the biggest turn-off for a customer seeking help on an issue.

Customer drop-out:

Many of the contact centers have been using Interactive Voice Recording Systems to reduce the number of calls reaching an actual agent. This helps reduce the cost of the customer care service of a company but also has its downsides. Some say the voice prompts are difficult to understand and give too much data in too short a time (Misrouted analysis). Also, most of the time, customers dislike talking to a machine and request to be transferred to an agent thereby increasing the customer drop out rate. 

These problems faced by contact centers can be effectively resolved by Conversational AI-led analytics. Stay tuned to find out how Conversational AI could resolve the contact center’s problems in our 2nd edition of ‘Conversational AI-led analytics is indeed the game-changer for contact centers.’
If you are looking for a tool that will resolve all of these issues efficiently, we have an amazing tool “FLASH” available to you. Contact Team FLASH at info@genisights.com or visit the website https://flash.genisights.com/ to know more about its capabilities and benefits. You can also schedule a demo now with the Team FLASH to discuss the details of your requirements.

Learn how Advanced Analytics aids the contact centers to enhance the customer experience thereby converting contact centers to revenue centers. Our Conversational AI product FLASH comes handy providing meaningful insights in just a matter of seconds.

Conversational AI-led analytics is indeed the game-changer for contact centers will be a 3 part blog. The first part concentrating on the problems faced by the contact centers followed by the solutions conversational AI could offer in part 2 and how the conversational AI solves the problems in real-time in part 3 of the blog.

Feature corner – A conversation on informal research

We feature Mr. Dorai Thodla in our monthly Feature corner, He’s Founder of Technology Strategies LLC and iMorph Innovation Center Pvt. Ltd. this month. He has co-founded 4 software companies – two in India and two in the USA. Mr. J. S. Sridharan, our Co-Founder, and Senior Vice President ask a few questions to Mr. Dorai Thodla. You may follow Dorai on Twitter (@dorait) and LinkedIn.

He helps organizations leverage emerging technologies for building skills and creating innovative products. His companies build Information Assistants, a collection of tools for gathering and analyzing information.

He considers the ability to do informal research and tracking technology trends as important skills for the future of work.  

Sridharan – With reference to the informal research process, could you tell us more about which areas this would apply to?

Dorai – There are a few areas where quick informal research can help.

1. A product team trying to validate a set of ideas. They may need to know what already exists and whether they should build a product.

2. A startup with reasons similar to product groups, but may need additional information about the market size, how the market is growing, current players, and whether there is a viable business model.

3. Finding gaps and opportunities in emerging technology trends. Inferring latent needs from discussions and analyzing competitive market spaces. 

Sridharan – Why do you think organizations would undertake informal research and at what level? 

Dorai – It depends on the size of the organization. Small to medium organizations may use it at a tactical level. For example, a small product group may use it to do competitive analysis, opportunity analysis for product extensions, etc. 

Sridharan –  We know that we can leverage Twitter as a tool for any informal research.  Can you share insights on how twitter hashtags will help organizations in this research?  How can we leverage LinkedIn for this? What are some other tools we could use for doing this informal research?

Dorai – Hashtag’s usage is not uniform. Some of the most influential tweeters (like Paul Graham) do not use hashtags at all. An analysis of hashtags shows that they are used when you want to join conversations or when you are in a conference or other similar events.

Linkedin

Twitter is a broad platform serving a wide variety of people. You can see authors, journalists, news organizations, technology people from the small, medium, and large organizations. LinkedIn is different. It started serving the needs of HR and recruiters. For a while, now LinkedIn is broadening the base but the type and quality of conversations are very different. It is easier to find influencers and people from large organizations. The profiles on LinkedIn are much richer.

The major problem with LinkedIn is a highly restricted API. So gathering information using automated tools is a bigger challenge. 

With respect to other tools,  If you cannot afford to subscribe to expensive research resources from experts in the field (students and startups have this problem), there are many tools you can cobble together to do your own research. You can call this DIY Research or Informal research. These tools include:

– Search engines

– Blogs and syndicated feeds

– News sources (both raw and aggregated)

– Websites and Portals

– Social media tools like Twitter but also LinkedIn and to some extent Facebook

– Wikis including Wikipedia and its properties

– Trade and Research publications

– Data and Scholarly search engines

Sridharan – How can startups leverage social media for tracking technology trends?

Dorai – If you want to speak the language of your customers, you need to use the vocabulary of your market place. These include idioms, phrases, and memes in those places. For example, tl;dr (too long did not read) is a common term among software developers. Other terms include “code smells”, “tech debt” etc. You can gather tweets of developers, do a frequency analysis of the terms to understand the terms of the group. 

The importance of understanding the vocabulary of users may be much fold. If you want to use content marketing, you may want to use that language in your content. 

There are a few ways. The more open the social media, the better. That is why Search and Twitter are our primary tools of choice.

1. Google, Facebook, LinkedIn, Twitter will provide you data about the size of a specific niche audience.

2. The search parts of Google, Twitter, and others will provide discovery tools. I prefer tools that provide good APIs. These tools make data-driven decisions easier. For example, on Twitter, I can type a search, find popular hashtags, lists, and mentions, and can mine them for more information. This is not so easy to do for example in LinkedIn (despite their having an API) and Quora. So people resort to using scrapers and RPA (robotic process automation) tools.

3. Blog searches or Feed Searches

4. Job searches –  for certain types of research jobs are a leading indicator

5. Conferences, meetups, and discussion forums are useful tools for identifying watch signals.

6. Funding patterns, especially Angel-funding are leading indicators. You can also track other rounds of funding and private equity to understand the market space. 

7. Books and articles are mostly lagging indicators but they are good sources to track the popularity of certain technologies. 

Sridharan – How can start-ups and organizations leverage this informal research for new product markets and finding new opportunities?

Dorai – There are several stages for a product startup. Let us look at the needs at each stage.

1. You come up with an idea for a product. You need to find out whether products similar to yours are there already and what are the pros and cons of each product (an analysis of alternative solutions). Having some competition validates that there are a problem and the need for a solution. But a lot depends on how established the competition is. At the end of this research, you identify a niche and some potential early adopters.

2. You build a prototype or a minimum viable product. You do this in stages. Once you have a proof-of-concept prototype or a functional, usable prototype, you need to validate that it solves the problem. You need research to identify these users, ways to reach them, and interact with them.

3. Once you have a few users using your product, you need to expand the number and also identify paying customers. You need research to go from 100s of users to thousands or tens of thousands of users.

4. Once you have sufficient users to feel comfortable with your validation, you need to price the product. If similar products exist, you need to research their pricing models. If there are no similar products but the market is being served by services, you need to research those pricing models.

As the number of users and types of users grows, you need more research to get to the next stage. Most of this research is not available in the market. Even if available, it may not be current. 

Sridharan – Could you elaborate on some new research methodologies that can help startups?

Dorai – Startups have several free and paid resources for product discovery, content discovery, keyword discovery, and competitive analysis. Informal research strings together available tools to create your own Research Assistants. I see this as a multi-stage process.

– Info tools – tools to gather data from a variety of sources – Web, RSS feeds, Tweets, Posts, Discussion boards, Forums, and Blogs.

– Analyzers – Analyze information gathered via info tools – segment/cluster, discover topics, mine entities, derive the vocabulary of conversations, etc. The analyzers use Machine Learning, Deep Learning, Natural Language Processing, semantic tagging, and other emerging techniques. 

Sridharan – With reference to businesses tracking technology trends, how do you think digital analytics help track the trends?

Dorai – Data gatherers will bring in a lot of data in various digital forms – text, images, speech (podcasts), videos. You need analytics for different levels of filtering. The first level simple analytics are early filters to separate signal from noise. Next level analytics provide good inputs for inference and prediction.

Sridharan – To understand customers and market size, which tools or platforms to look for?

Dorai – We can start with some of the available free tools. These include search engines, Twitter, LinkedIn, Facebook. They help you understand the market sizes since they need to know it to guide you in advertising. For example, using Facebook or Google ad products you can understand the size of a reachable market.

Using product hunt, beta list, and other similar services you can identify similar products. But nothing beats search. You can come up with a list of key terms that describe your product and try searches and analyze the results. Google provides a search API that you can use to automate this process.

You can use services like angel list to locate startups. You can use search to locate directories, professional associations in your product or technology space.

Twitter is becoming a great resource for discovery. Twitter APIs allow you to automate searches. Using Twitter you can find companies, products, trends, research reports, influencers, and discussions. You can create lists to manage the vast amount of information, retrieve tweets and links, and analyze the results.

Sridharan – How does text analytics help organizations in the changing business landscape?

Dorai – The outcome of searches (web search, Twitter search, Blog Search, Product Search, etc.) is short documents.

You need to text analysis to mine useful information from documents. Let us take an example of a blog comparing several products. You can use topic and keyword extraction techniques to derive useful information. You can use entity extraction to identify companies, products, and events mentioned in the article.

Feature Corner- Transforming the Digital Banking Landscape

Digital technologies have been helping banks and financial institutions to seize new markets, grow the business, and cut costs by providing a competitive advantage.  We see tremendous changes in the banking and financial services industry impact businesses and in an attempt to seek insights from business leaders from the industry, our Co-Founder and SVP Mr. Sridharan J. S has a conversation with Mr. Palani Balasubramanyam Nama, Head of Open Innovation and Digital Transformation, Societe Generale, who has over 21 years of experience working with Innovation & IT divisions of Investment Banks, Financial Institutions and European/American Multinationals, about the state of AI and other technologies in banking, in our exclusive ‘Feature Corner’.  As the Head of Trade Execution, Palani is also accountable for the IT & OPS team ensuring on-time and secure trade execution across global exchanges, efficiently from India.

Sridharan – Being in the banking industry for more than a decade, tell us how banks fostered innovation before COVID and how the perspective has changed during this situation? 

Palani – Pre COVID-19, innovation in banking was more focused on internal optimization, focused increasing digital footprint for efficiency, or improving customer journeys.

COVID has compelled to accelerate the adoption of contactless service delivery for customers, at a rapid pace. This constraint forced banks to partner with external eco-system for rapid transformation, to provide neo banks equivalent digital experience for customers. Apart from service channels, there is quite a bit of investment being done on employee experience, like enabling them to work from home, across multiple secure digital channels and collaboration tools.

Sridharan – Approximately what percentage of spend, do you know of, that banks spend on IT costs annually? 

Palani – Large banks spend between 5 to 10%, small & medium banks spend between 20 to 30% of their total spend on IT costs.

Sridharan – Approximately What percentage of banks’ transactions or what areas are automated?

Palani – Above 70% of P2P transactions are automated, however, B2B transactions hover between 30 to 40%. B2B transaction STP % is catching up in the recent past with the evolution of Machine Learning & Smart Automation.

Sridharan – As more devices connect to the internet and the concept of the Internet of Things gaining rapid momentum, what are the preparations banks are involved in the rapid increase in equipping themselves with the huge amount of data generated from the devices?

Palani – BFSI has been slow in the adoption of IoT before COVID, given security threats and central bank regulations. However, post-pandemic, banks are more open to adopting digital channels to deliver contactless & remote client experience.

This unprecedented disruption has increased data volumes multifold. Most of the banks have established internal data analytics teams to address basic data processing needs. Despite interest in partnering with external partners, there are roadblocks to be addressed before it can become reality, especially around secure data sharing, multiparty computation & adherence to regulatory norms (GDPR).

Sridharan – Data, being the most important factor for the digital transformation for banks, what technologies are used to leverage data to meaningful insights for smarter decisions?

Palani – Large BFSI enterprises have multiple tech stacks based on needs. However, they have well defined IS strategies guiding the usage of tech stacks based on problem patterns being addressed.

While exploring partnerships with tech giants like ORACLE, Teradata, or IBM, there is an intrinsic push to adopt opensource tech stacks, to ensure open standards and cost optimization.

Sridharan – Do you think banks are struggling with the rapidly changing technological landscape in terms of which technologies to adopt and which ones not to? 

Palani – It is a challenge to keep up with fast-paced Technology landscape evolution for any organization. It is more complex in BFSI given constraints around tech choices to be made keeping in mind the security and reliability of services. In BFSI, business capabilities and security take precedence over technology grandeur. 

There are few instances of large banks partnering with external partners to disruptive technology transformation, however, results so far haven’t been very encouraging. BFSI transformations demand as business acumen and technology expertise. External partners tend to be good at technology expertise, however most of the time they lack business acumen.

Sridharan – AI has been long seen as the next big thing in the banking and financial industry be it in the area of planning, cost-saving, customer experience, fraud prevention, or anti-money laundering.  What do you see as the future of banking given the exponential growth in IoT devices, cloud computing with Artificial intelligence capabilities?

Palani – AI, so far has been capable of helping in raising proactive alerts, simplifying decision making, and processing of large datasets. however, it is far from autonomous process execution or decision making, which limits the full-scale unsupervised deployment of AI-driven process flows, which in turn would help increase the straight-through processing rate.

Necessity is the mother of invention. Pandemic has increased BFSI’s appetite to adopt technologies like IoT, Cloud computing, and AI. The exponential growth of these technologies should be complemented by the rapid hardening of enterprise cybersecurity strategies, without which, banks may be hesitant to leverage the full potential of emerging technologies.







Effective Decision Making

  FLASH CORNER

imgpsh_fullsize_anim

The BI Survey research found that 58% of the surveyed companies relied more than half of their decisions on gut feel or experience over data. But two-thirds believe that information will be valued for decision making in the future. Highly data-driven organizations are 3X more likely to report significant improvement in decision-making, according to a survey by PWC.

The HiPPO effect, coined by Avinash Kaushik and reiterated by Bernard Marr in Forbes, is usually the most experienced, most powerful, or highest paid in the room. Once they voice their opinion, others find it disrespectful to voice their own. This may not lead to desired results. Let’s think if the decision would go on a similar path if the time and resources would be different. Given more time, you would probably rely on the opinion of a board of directors or your experienced colleagues. Will you still be completely confident?

   Data however changes this. You have an unbiased opinion based on facts that leads to better results. Data analytics uses information from all sources and simplifies it to visual representations that highlight what you need. You are now capable of viewing all your information in just one screen. But data is useless until interpreted. Data-driven decision making or DDMM lies in interpreting this data for actionable insights. A term fondly called as data storytelling is considered an art. Artificial intelligence-based complex algorithms make sure to see more than what the human eye and mind are capable of. These insights help drive your decisions in directions that lead to success. So you have got your data, got your insights from this data, why then have you not used it to make the decision given to you 10 minutes ago?

The problem with many AI solutions is the inability to get exactly what you want when you want. You have a ton of data and a ton of insights but how does your BI tool know what you need to reach the answer for the question given to you 10 minutes ago. You have knocked on the door of data analytics and are seeking the solution. But can’t you just ask?

FLASH, by geniSIGHTS, gives you the power to simply talk to your BI tool and seek the information you need to come to the decisions that will open the right doors. In turn, FLASH also talks back to you with insights. FLASH is a one of a kind voice-powered dashboard that provides quick insights into your organization’s metrics. It goes beyond the functionality of Business Intelligence and uses conversational AI in the dashboard to respond to queries and generates real-time insights for actionable decision-making.

FLASH is AI-driven, lightweight, and easy to use.  It can easily be integrated with your existing data systems without having any extra software. It is also accessible from any location and insights can be exported and shared with the members of your organization. The visualization can be customizable and easily understood without any expert knowledge of data. FLASH ensures that your entire team is on the same page, making your user experience smooth and without any delay. Unlike other solutions, FLASH learns continuously to understand what you need for your business and becomes your virtual data assistant over a period of time.

FLASH is your AI agent who has all the answers you need to make decisions in a FLASH. We have seen how Amazon’s Alexa has made life easier. Shouldn’t your dashboard be able to do that? Now you can make your decisions within 10 minutes and be sure of it.

FLASH gets you what you need, you simply need to ask it. Check out FLASH at https://flash.genisights.com/